激光焊
核心原理
利用高能量密度激光束(功率密度 10⁶-10⁸W/cm²)聚焦于焊接区域,瞬间熔化母材形成熔池,无需填充材料或配合少量焊丝,通常辅以惰性气体(Ar)保护防氧化。
技术特点
优势:热输入极小(仅为气体保护焊的 1/10-1/5),变形可忽略;焊缝深宽比大(可达 10:1),精度高(缝宽 0.1-0.5mm);焊接速度快(可达 10-50m/min),适合薄壁件。
局限:设备昂贵(光纤激光器约数十万元),对装配精度要求(间隙需≤0.1mm);高反光材料(如铜、铝)能量吸收低,焊接难度大。
典型应用
航空航天薄壁结构、动力电池极耳、医疗器械、精密电子元件等对精度和变形要求严苛的场景。
激光 - 气体保护复合焊(主流复合工艺)
核心原理
激光束作为主要热源实现深熔,同时搭配气体保护焊(MIG/MAG)的焊丝填充,激光预热母材减少焊丝熔化阻力,气体保护熔池防氧化。
技术优势
互补短板:激光解决气体保护焊热输入大、精度低的问题;气体保护焊弥补激光对间隙敏感、高反光材料焊接困难的缺陷。
适用范围广:可焊材料涵盖碳钢、不锈钢、铝合金、钛合金,板厚范围扩展至 0.3-20mm。
效率与质量平衡:焊接速度比单一激光焊略低,但远高于气体保护焊,且焊缝强度、成形性更优。
典型应用
高铁车体铝合金焊接(板厚 3-8mm)、压力容器厚壁不锈钢焊接、汽车高强钢结构件焊接等。
激光器与光学系统
激光器(光纤激光器、CO₂激光器等)需严格控制工作环境:温度 15-25℃,湿度≤60%,粉尘浓度≤0.5mg/m³(每日记录环境参数),否则易导致光路污染或激光器老化加速。
激光头镜片(聚焦镜、保护镜)需每周检查:用专用镜头纸蘸无水乙醇轻轻擦拭,若有划痕或烧蚀(因飞溅物损伤)需立即更换,否则会导致能量衰减、焊缝强度下降(保护镜建议每 100 小时更换一次)。
光路校准:每月检查激光束对中性(通过打标测试确认焦点位置),偏差超过 0.1mm 时需专业人员调整,否则会导致熔深不均。
冷却系统
激光焊设备依赖水冷系统(激光器、激光头均需冷却),需每日检查冷却液液位(低于刻度线时添加专用冷却液,禁止混用自来水),每周检测冷却液电导率(超过 10μS/cm 需更换,防止腐蚀管路)。
水冷机过滤器每 3 个月更换一次,避免杂质堵塞冷却通道,导致激光器过热报警。

